KA UKA

Kinematic Alignment Technique For UKA

Charles C.J Rivière ISTA 2019 – Keynote

Imperial College London

What have we done so far?

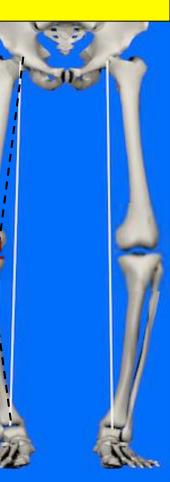
Systematic approach

Constitutional alignment

What have we done so far?

Systematic approach

Constitutional alignment



MA UKA

What have we done so far?

- Systematic approach
- Residual complications!
 - Proximal tibia pain (1 to 10%)
 - Medial tibia plateau fracture
 - Edge loading related (PE wear/dislocation)

MA UKA

What have we done so far?

- Systematic approach
- Residual complications!

- Lack of precision ?
- Poor implant design ?

What have we done so far?

Systematic approach

Residual complications!

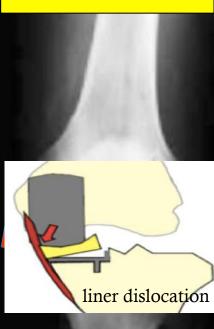
- Lack of precision ?
- Poor implant design ?

...Intrinsical limitation?

MA UKA

...Intrinsical limitation?

No respect of medial compartment' anatomy & biomechanics



stress riser (keel)

...Intrinsical limitation?

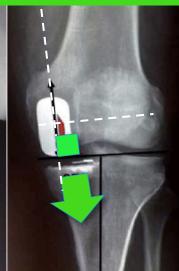
No respect of medial compartment' anatomy & biomechanics

MA UKA

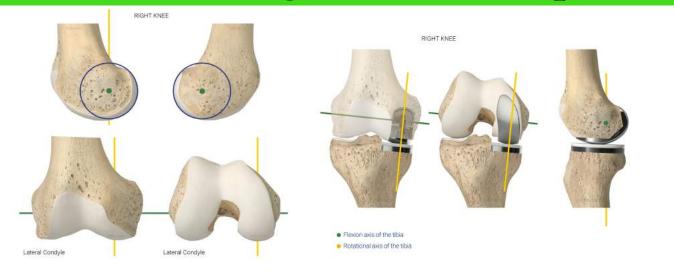
...Intrinsical limitation?

No respect of medial compartment' anatomy & biomechanics

MA UKA



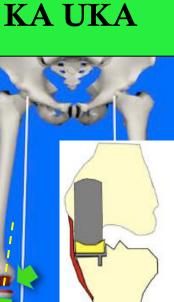
Kinematic Alignment technique for UKA



lindri<u>cal</u> axis

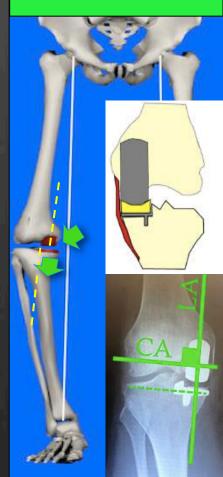
successfully performed with **few fixed bearing UKA designs**for few decades!

Kinematic Alignment technique for UKA

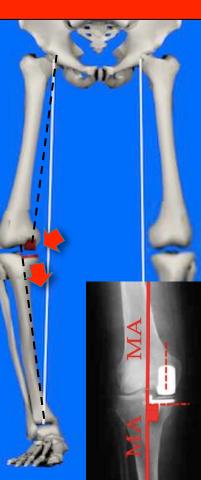


Personalised approach

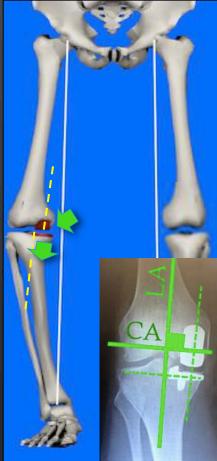
Constitutional alignment



Personalised approach


Potential benefits:

- 1. Physiological bone loading
- 2. Physiological soft-tissue balance (personalized T slope)
- 3. Excellent components interact^o (less PE wear/dislocation)
- 4. Bone preserving (tibia)
- 5. Better fit of components to supportive bone



MA UKA

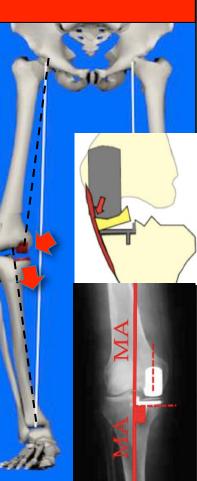
	MA technique "systematic approach"	KA technique "patient specific approach"		
F flexion	similar			
T rotation	similar			
F distal cut		L parallel to KA tibial cut (parallel to cylindrical axis and parallel to medial condylar wall)		
F posterior cut	parallel to MA tibial cut	 parallel to KA tibial cut (parallel to cylindrical axis and perpendicular condylar flexion facet axis) 		
T frontal cut	perpendicular mechanical axis of tibia	parallel to cylindrical axis (=perpendicular condylar flexion facet axis)		
T slope	2 to 7° posterior slope	slope of medial plateau		

KA UKA

Alters physiological Biomechanics


Keeps physiological Biomechanics

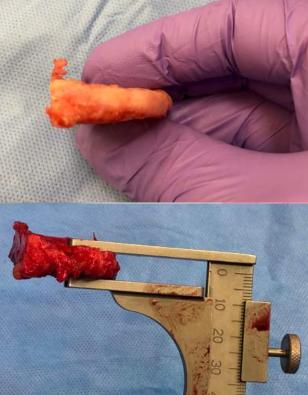
MA UKA


Not physiological
Technically demanding

 No respect of medial compartment' anatomy & biomechanics
 Technically demanding (balance gaps, achieve good components interaction)

KA UKA

MA UKA


KA UKA

- Physiological - Technically easy


 Respect of medial compartment' anatomy & biomechanics
 Technical ease (balance gaps, achieve good components interaction)

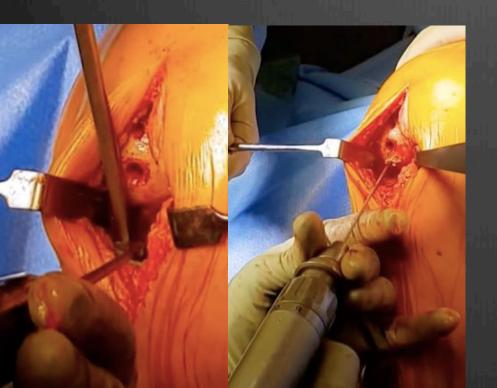
Surgical Technique KA-UKA Oxford®



Surgical Technique KA-UKA Oxford®

Surgical Technique KA-UKA Oxford®

Approach Clean osteophytes tibial cut Set position Femoral Posterior condular Balance 10° flexion Finition Femur and tibia - Femur: remove anterior and posterior bone, drill holes. - Tibia: keel remove meniscus Closure



Surgical Technique KA-UKA Oxford®

Approach Clean osteophytes tibial cut Set position Femoral Posterior condular Balance 10° flexion Finition Femur and tibia - Femur: remove anterior and posterior bone, drill holes. - Tibia: keel remove meniscus Closure

Surgical Technique KA-UKA Oxford®

Approach Clean osteophytes tibial cut Set position Femoral Posterior condular Balance 10° flexion Finition Femur and tibia - Femur: remove anterior and posterior bone, drill holes. - Tibia: keel remove meniscus Closure

Surgical Technique KA-UKA Oxford®

knee flexion knee extension

Surgical Technique

Approach Clean osteophytes tibial cut Set position Femoral Posterior condular Balance 10° flexion **Finition Femur and** tibia Femur: remove anterior and posterior bone, drill holes. **Final implants** - Tibia: keel remove meniscus Closure

Bilateral KA-UKA 1-stage

PDS

R

HBL

Surgical Technique KA-UKA Oxford®

Clean osteophytes

Set position Femoral

Balance 10° flexion

Final implants

axis

Approach

tibial cut

Posterior condular

Finition Femur and

- Femur: remove anterior and posterior bone, drill holes.

tibia

Closure

- Tibia: keel

remove meniscus

Contents lists available at ScienceDirect

Orthopaedics & Traumatology: Surgery & Research

journal homepage: www.elsevier.com

Original article

Kinematic alignment technique for medial OXFORD UKA: An in-silico study

0

Charles Rivière^{a,*}, Ciara Harman^b, Anthony Leong^c, Justin Cobb^c, Cedric Maillot^a

^a The MSK Lab-Imperial college London, South West London Elective Orthopaedic Centre, London, United Kingdom ^b South West London Elective Orthopaedic Centre, Dorking road, KT18 7EG Epsom, United Kingdom ^c The MSK Lab-Imperial college London, Charing Cross Campus, Laboratory Block, W6 8RP London, United Kingdom

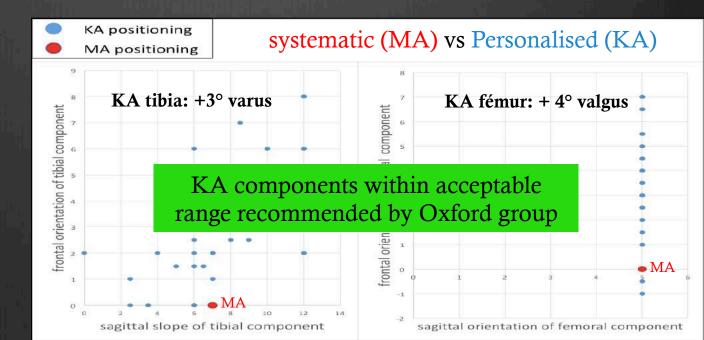
Conventional Versus Kinematic Aligned OxfordTM UKA

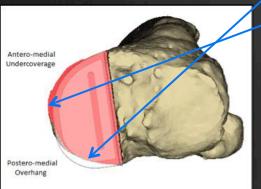
Contents lists available at ScienceDirect

Orthopaedics & Traumatology: Surgery & Research

journal homepage: www.elsevier.com

Original article


Kinematic alignment technique for medial OXFORD UKA: An in-silico study


0 -

Charles Rivière^{a,*}, Ciara Harman^b, Anthony Leong^c, Justin Cobb^c, Cedric Maillot^a

¹ The MSK Lab-Imperial college London, South West London Elective Orthopoedic Centre, London, United Kingdom ¹⁰ South West London Elective Orthopaedic Centre, Dorking road, KT18 7EG Epsom, United Kingdom ¹⁰ The MSK Lab-Imperial college London, Charing Cross Campus, Laboratory Block, W6 SRP London, United Kingdom

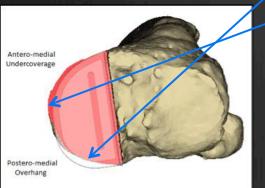
Contents lists available at ScienceDirect

Orthopaedics & Traumatology: Surgery & Research

journal homepage: www.elsevier.com

Original article

Kinematic alignment technique for medial OXFORD UKA: An in-silico study



Charles Rivière^{a,*}, Ciara Harman^b, Anthony Leong^c, Justin Cobb^c, Cedric Maillot^a

³ The MSX Lab-Imperial college London, South West London Elective Orthopaedic Centre, London, United Kingdom ⁹ South West London Elective Orthopaedic Centre, Dorking road, KT18 7EG Epson, United Kingdom ⁶ The MSK Lab-Imperial college London, Charing Cross Campus, Laboratory Block, WeS BRP London, United Kingdom

		MA simulation	KA simulation	p
femoral antero-med	ial overhang	10	2	0.005*
tibial postero-media	l overhang	2	2	1
tibial undercover	1/3 posterior	0	0	
	1/3 medium	3	0	0.083
	1/3 anterior	0	0	
borderline anatomical components fit		15	4	0.009*
		38%	10%	

Orthopaedics & Traumat

Contents lists available at ScienceDirect

Orthopaedics & Traumatology: Surgery & Research

journal homepage: www.elsevier.com

Original article

Kinematic alignment technique for medial OXFORD UKA: An in-silico study

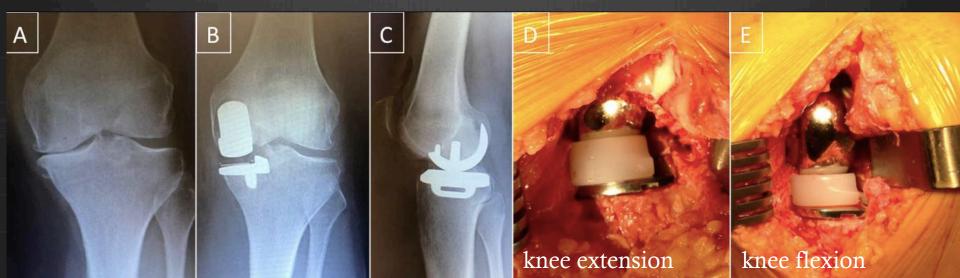
p

Charles Rivière^{a,*}, Ciara Harman^b, Anthony Leong^c, Justin Cobb^c, Cedric Maillot^a

^a The MSK Lab-Imperial college London, South West London Elective Orthopaedic Centre, London, United Kingdom ^b South West London Elective Orthopaedic Centre, Dorking road, KT18 7EG Epsom, United Kingdom ^c The MSK Lab-Imperial college London, Charing Cross Campus, Laboratory Block, W6 8RP London, United Kingdom

MA	KA	
simulation	simulation	

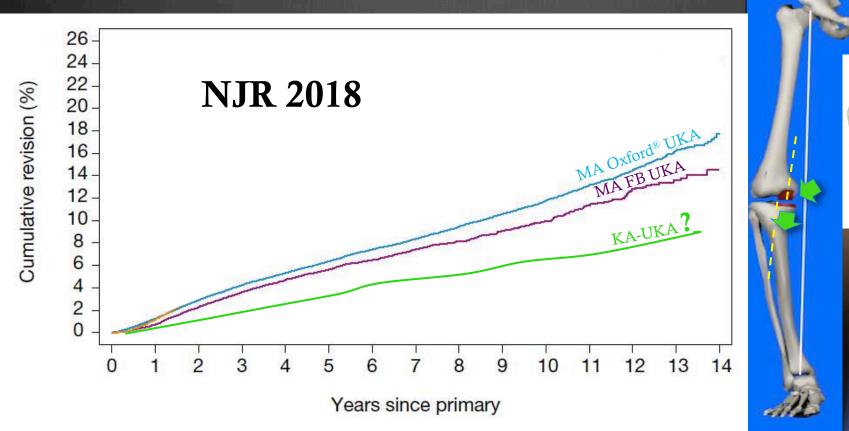
KA UKA:
→ Higher bone coverage
→ Less component overhang



My Experience

≈ 50 KA UKAs OXFORD over last 18 months
On-going study

TAKE HOME MESSAGE


- 1. Physiological bone loading
- 2. Physiological soft-tissue balance (personalized slope)
- 3. Excellent components interact^o (less wear/ dislocation)
- 4. Bone preserving (tibia side)
- 5. Better fit of components to supportive bone

...KA-UKA is likely an improvement and could be clinically advantageous...Evidence awaited!

KA UKA

KA UKA

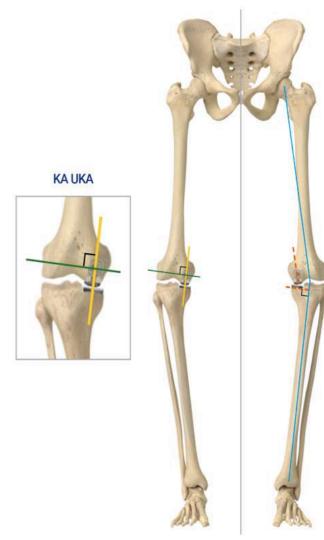
TAKE HOME MESSAGE

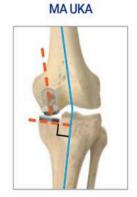
Thank You For Listening

Personalized Hip and Knee Joint Replacement

> Charles Rivière Pascal-André Vendittoli Editors

Springer




Thank You For Listening

KEEP CALM AND SWITCH **TO KA**

Thank You For Listening

- Flexion axis of the tibia
 Mechanical axis
- Rotational axis of the tibia